Colorimetric detection of mercury ions based on plasmonic nanoparticles.

نویسندگان

  • Jianjun Du
  • Lin Jiang
  • Qi Shao
  • Xiaogang Liu
  • Robert S Marks
  • Jan Ma
  • Xiaodong Chen
چکیده

The development of rapid, specific, cost-effective, and robust tools in monitoring Hg(2+) levels in both environmental and biological samples is of utmost importance due to the severe mercury toxicity to humans. A number of techniques exist, but the colorimetric assay, which is reviewed herein, is shown to be a possible tool in monitoring the level of mercury. These assays allow transforming target sensing events into color changes, which have applicable potential for in-the-field application through naked-eye detection. Specifically, plasmonic nanoparticle-based colorimetric assay exhibits a much better propensity for identifying various targets in terms of sensitivity, solubility, and stability compared to commonly used organic chromophores. In this review, recent progress in the development of gold nanoparticle-based colorimetric assays for Hg(2+) is summarized, with a particular emphasis on examples of functionalized gold nanoparticle systems with oligonucleotides, oligopeptides, and functional molecules. Besides highlighting the current design principle for plasmonic nanoparticle-based colorimetric probes, the discussions on challenges and the prospect of next-generation probes for in-the-field applications are also presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid naked-eye detection of mercury ions based on non-crosslinking aggregation of double-stranded DNA-carrying gold nanoparticles.

Colorimetric detection of mercury ions (Hg(2+)) with the naked eye was accomplished within 1 min by a combination of non-crosslinking aggregation of double-stranded DNA-carrying gold nanoparticles and complex formation of thymine-Hg(2+)-thymine.

متن کامل

Low picomolar, instrument-free visual detection of mercury and silver ions using low-cost programmable nanoprobes

The EPA's recommended maximum allowable level of inorganic mercury in drinking water is 2 ppb (10 nM). To our knowledge, the most sensitive colorimetric mercury sensor reported to date has a limit of detection (LOD) of 800 pM. Here, we report an instrument-free and highly practical colorimetric methodology, which enables detection of as low as 2 ppt (10 pM) of mercury and/or silver ions with th...

متن کامل

Chitosan Capped Silver Nanoparticles as Colorimetric Sensor for the Determination of Iron(III)

A selective, simple and low-cost method for the colorimetric determination of Fe3+ ions based on chitosan capped silver nanoparticles (Chit-AgNPs) was presented. Chitosan is a cationic polyelectrolyte and possesses amino and hydroxy groups which make it widely used as a capping agent for Ag NPs. The synthesized chitosan capped silver nanoparticles with excellent colloidal stability were charact...

متن کامل

Recyclable fluorimetric and colorimetric mercury-specific sensor using porphyrin-functionalized Au@SiO2 core/shell nanoparticles.

A fluorimetric/colorimetric mercury sensor based on Au@SiO(2) core/shell nanoparticles has been developed and demonstrated. The porphyrin derivative (2) was attached to Au@SiO(2) core/shell nanoparticles by covalent bonds and showed a red color and strong fluorescent properties. In the absence of specific metal ions, the porphyrin-functionalized Au@SiO(2) nanoparticles (1) exhibited strong fluo...

متن کامل

Parameters for selective colorimetric sensing of mercury(II) in aqueous solutions using mercaptopropionic acid-modified gold nanoparticles.

We unveil a new homogeneous assay-using mercaptopropionic acid-modified Au nanoparticles in the presence of 2,6-pyridinedicarboxylic acid for the highly selective and sensitive detection of Hg(2+) ions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Small

دوره 9 9-10  شماره 

صفحات  -

تاریخ انتشار 2013